

Holocene sea-level change on the west coast Bohai Bay, China 1 2 Fu Wang^{1,2}, Yonggiang Zong³, Barbara Mauz^{4,5}, Jianfen Li^{1,2}, Jing Fang⁶, Lizhu Tian^{1,2}, 3 Yongsheng Chen^{1,2}, Zhiwen Shang^{1,2}, Xingyu Jiang^{1,2}, Giorgio Spada⁷ and Daniele Melini⁸ 4 5 ¹Tianjin Center of Geological Survey, China Geological Survey (CGS), Tianjin, China 6 ²Key Laboratory of Coast Geo-Environment, China Geological Survey, CGS, Tianjin, China 7 ³Department of Earth Sciences, The University of Hong Kong, Hong Kong SAR, China 8 ⁴School of Environmental Sciences, University of Liverpool, Liverpool, UK 9 ⁵Department of Geography and Geology, University of Salzburg, Salzburg, Austria 10 ⁶College of Urban and Environmental Science, Tianjin Normal University, Tianjin, China 11 ⁷Department of Science, University of Urbino, Urbino, Italy 12 ⁸Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy 13 Correspondence to to: Fu Wang (wfu@cgs.cn) 14 15 Abstract. To constrain models on global sea-level change regional proxy data on coastal change are 16 indispensable. Here, we reconstruct the Holocene sea-level history of the northernmost East China Sea shelf. 17 This region is of great interest owing to its apparent far-field position during the late Quaternary, its broad shelf 18 and its enormous sediment load supplied by the Yellow River. This study collected 15 sediment cores from the 19 coastal plain of west Bohai Bay and extracted 25 sea-level index points through the analyses of sedimentary 20 facies, foraminiferal assemblages and radiocarbon dating. These proxy data indicate a phase of rapid rise from 21 c. -17 m to -4 m of mean sea level between c. 10 ka and 6.5 ka. This was followed by a phase of slow rise from 22 6.5 ka to 2 ka. In contrast to previous studies our data suggest that the sea level remained c. 2.5 - 1 m below 23 the modern mean sea level during the mid-late Holocene. The difference between proxy data and sea-level 24 predictions based on three GIA models suggests that the Bohai coastal plain experiences subsidence at a rate 25 of around 1.25 mm/a since about 7 ka which masks the mid-Holocene highstand recorded elsewhere in the 26 region. Thus, during the early Holocene rapid rise the sea flooded the coastal plain and the shoreline retreated 27 landwards at a rate of c. 40 m/a. It stayed at the landward maximum marine limit during the mid Holocene

28 when the sea-level rise slowed down allowing vertical sedimentary accretion to occur in the landward areas.

- 29 During the late Holocene fluvial sediment supply outpaced the sea-level change and the shoreline prograded
- 30 seawards at a rate between 20 and 10 m/a.
- 31 KEYWORDS: Sea level; Holocene; Glacial Isostatic Adjustment; Ice Equivalent Sea Level; Bohai Bay

32 1. Introduction

33 The sea-level rise since the mid-19th century is one of the major challenges to humanity of the 21st 34 century (IPCC, 2014). The driving mechanisms of this rise are relatively well-known on a global scale, but 35 on a regional scale the mechanisms are modified by local parameters. One of these parameters is the regional 36 Holocene sea-level history, which is a background sea-level signal of variable amplitude. In fact, the regional 37 response to sea-level changes may be very different from the global signal (Nicholls and Cazenave, 2010) 38 and, understanding regional costal environment is a rising demand of policy makers. Here, we study the 39 Holocene sea-level history of Bohai Sea, which is the northernmost part of the Yellow Sea. The area is of 40 special interest because its shoreline is situated on the broad shelf of the East China Sea in the far-field of the 41 former ice sheets. While the far-field position should allow approximating the ice-equivalent sea level, the 42 broad shelf is thought to affect the sea-level (Peltier and Dummond, 2002) by up to 10 m (e.g. Milne and 43 Mitrovica, 2008) in a spatially complex manner. In addition, the exceptionally high supply of fine-grained 44 fluvial sediment to the bay should have influenced shoreline migration in the past. In order to reliably 45 constrain the sea level history in such complex settings, high-resolution proxy data are required and 46 compared with glacio-isostatic adjustment (GIA) model predictions where the difference between model and 47 proxy datum should allow inferring the non-GIA, hence local, impact on the sea-level history. Our study 48 builds on earlier work on late Quaternary stratigraphy and coastal evolution (e.g. Cang et al., 1979; Geng, 49 1981; Wang et al., 1981; Wang, 1982; Yang and Chen, 1985; Zhang et al., 1989; Zhao et al., 1978; Fig. 1) 50 and on published sea-level index points (SLIP) using chenier ridges (Su et al., 2011) and oyster reef (Wang et 51 al., 2011) as sea-level indicators. Li et al. (2015) draw a sea-level band for the west Bohai Bay based on 136 52 SLIPs and limiting points (LPs). However, misfits between model outputs and observational data are

- 53 apparent (e.g. Wang et al., 2012; Bradley et al., 2016; Li et al., 2015), which are likely caused by the poor
- 54 quality of the mid-late Holocene sea-level data and insufficient data for the early-mid Holocene.
- 55 2. The study area

56	The study area lies in a mid-latitude, temperate climate zone (Fig. 1a) on the northwestern coast of the
57	East China Sea's wide shelf. Geologically, the Bohai Bay is a depression filled by several kilometer-thick
58	Cenozoic sediment sequences with the top 500 m ascribed to the Quaternary (Wang and Li, 1983). The long-
59	term tectonic subsidence has been estimated to about 1.3-2.0 mm/a at Tianjin City (Wang et al., 2003). The
60	Bay is a semi-enclosed marine environment, connected to the Pacific through a gap between the two
61	peninsulas, Liaodong Peninsulas and Shangdong Peninsulas and the Yellow Sea (Fig. 1b). Our study area is
62	the central coast of the Bay which lies between two deltaic plains, the Yellow River delta in the south and the
63	Luan River delta in the north (Fig. 1b). Several small rivers (e.g. Haihe and Duliujianhe, Fig. 1c) cut through
64	the coastal plain and enter the Bay. The coastal lowland is characterised not only by its low-lying nature,
65	(less than 10 m above sea level), but also by a series of Chenier ridges situated south of the Haihe River and
66	buried oyster reefs situated north of the Haihe River (Fig. 1c). Local reference tidal levels such as mean high
67	waters (MHW) and highest high waters (HHW) are 1.25 m and 2.30 m respectively, based on the four tidal
68	stations on the west coast of Bohai Bay (Fig. 1c). During the Last Glacial Maximum the shoreline moved to
69	the shelf break of the Yellow Sea, more than 1000 km to the east and southeast of our study area (e.g. He,
70	2006). During the Holocene the sea inundated the coastal area with the shoreline moving about 80 km inland
71	(e.g. Wang et al., 2015). Over 130 SLIPs established for the past 6000 calendar years (e.g. Li et al., 2015)
72	from the oyster reefs and chenier ridges fall into a band between 2.5 m and -2.5 m elevation.

74 **3.** Methods

- 75 **3.1** Sampling and elevation measurements
- To obtain sedimentary sequences for this study, we consulted previous studies (e.g. Cang et al., 1979; Geng,
- 77 1981; Wang et al., 1981; Wang, 1982; Yang and Chen, 1985; Zhang et al., 1989; Zhao et al., 1978; Xue et
- al., 1993) to learn where in the bay marine deposits are dominant and where the landward limit of the last
- 79 marine transgression should occur. We then collected 15 cores along W-E transects from the modern
- 80 shoreline to 80 km inland (Fig. 1c), using a rotary drilling corer. Transect A, comprising 6 cores, stretches
- 81 from the modern shoreline 80 km inland and crosses the inferred Holocene transgression limit (Xue, 1993).
- 82 Transects B, C and D, comprising 9 cores, cross the transgression limit a little further south (Fig. 1c). The
- 83 surface elevations of the drilled cores were leveled to the National Yellow Sea 85 datum (or mean sea level,
- 84 MSL) using a GPS-RTK system with a precision of 3 cm. The GPS-RTK raw data were corrected and
- 85 processed to National Yellow Sea 85 datum system by the CORS system network available from the Hebei
- 86 Institute of Surveying and Mapping with National measurement qualification.

87 **3.2** Sediment and peat analyses

88 In the laboratory, the sediment cores were opened, photographed and recorded for sedimentary characteristics 89 including grain size, color, physical sedimentary structures, and content of organic material. To study the 90 degree of marine influence in the muddy sediment sequences, sub-samples were collected in 20 cm intervals. 91 These were analysed with respect to diatoms and foraminifera with a subsequent focus on the foraminifera 92 due to poor preservation of diatoms. The foraminifera of the $>63\mu$ m fraction of 20 g dry sample were 93 counted (e.g., Wang et al., 1985) following studies on modern foraminifera (e.g. Li, 1985; Li et al., 2009). 94 Sediment description followed Shennan et al. (2015): where in the sediment sequences foraminifera first 95 appear and/or significantly increase (from zero or less than 10 to more than 50) is noted as transgressive 96 contact, while the sediment horizon where foraminifera disappear and/or decrease significantly are noted as 97 regressive contact. These changes are often associated with lithological changes, such as from salt-marsh 98 peaty sediment to estuarine sandy sediment or tidal muddy sediment across a transgressive contact, or vice

- 99 versa. In addition, peat material was analysed in terms of its foraminifera content so that salt-marsh peat can
- 100 be differentiated from freshwater peat.

101 3.3 Analysis of compaction

- 102 Because the Holocene marine deposits are mainly unconsolidated clayey silt with around 0.74% organic
- 103 matter (Wang et al. 2015) post-depositional auto-compaction (Brain et al., 2015) may have led to lowering of
- 104 the SLIP. According to Feng et al. (1999), the water content and compaction of marine sediments show
- 105 positive correlation with the down-core reduction of water content of the Holocene marine sediment being
- 106 about 10%. Based on these observations, we assumed the maximum lowering is about 10% of the total
- 107 thickness of the compressible sediment beneath each SLIP. Consequently, the total lowering for an affected
- 108 SLIP is 10% of the total thickness of the compressible sequence beneath the dated layer divided by the post-
- 109 depositional lapse time proportional to the past 9000 years (e.g. Xiong et al., 2018), i.e. since the marine
- 110 transgression in the study area.

111 3.4 Radiocarbon analyses

112 69 bulk organic sediment samples and corresponding peat or plant subsamples from salt-marsh peat were 113 chosen for AMS radiocarbon analysis because these can give more reliable ages for the SLIPs. The resulting 114 radiocarbon ages were converted to conventional ages after isotopic fractionation were corrected based on 115 δ^{13} C results. The conventional radiocarbon ages were calibrated to calendar years using the data set Intcal13 116 of Calib Rev 7.0.2 for organic samples, peat and plant samples (Reimer, et al., 2013). Because Shang et al. 117 (2018) reported age overestimation of 467 years for the bulk organic fraction of salt-marsh peaty clay 118 compared to the corresponding peat fraction, all the AMS ¹⁴C ages between 4000 to 9000 BP obtained from 119 salt-marsh samples were corrected by Y=0.99X-466.5 (Y is the corrected age, X is the age obtained from the

120 organic fractions; Shang et al., 2018) except one <600 years age from borehole Q7 (Table 1).

121 3.5 Sea-level index points (SLIPs)

- 122 For determining SLIPs salt-marsh peaty clay layers were used. To convert the dated peat layers into a SLIP,
- 123 the modern analogue approach was used by measuring the elevation of the modern open tidal flat (Fig. 2) and
- 124 sampling its surface for their foraminiferal content. Following the studies of the modern foraminifera
- 125 assemblage (Li, 2009) Ammonia beccarii typically occurs in the upper part of an intertidal zone and
- 126 Elphidium simplex in the lower intertidal zone. The elevation data of the modern analogue samples for which
- 127 the foraminifera assemblage confirmed the salt-marsh origin of the peat (i.e. dominance of Ammonia
- 128 beccarii) were then used to infer the indicative meaning of the dated peat layer: the palaeo-mean sea level is
- 129 the midpoint between high water of spring tides (HHW:+2.3 m) and mean high waters (MHW:+1.25 m)
- 130 which is 1.78 m with ±0.53 m uncertainty (Wang et al., 2002, 2003; Li et al., 2015). For each dated salt-
- 131 marsh peat layer the indicative meaning and range, the total amount of possible lowering in elevation due to
- sediment compaction and the reconstructed elevation of palaeo-MSL are listed in Table 1.

133 3.6 GIA modelling

- 134 The time-evolution of sea level was obtained using the open source program SELEN (Spada and Stocchi,
- 135 2007) to solve the "Sea Level Equation" (SLE) in the standard form proposed in the seminal work of Farrell
- 136 and Clark (1976). In its most recent development, SELEN (version 4) solves a generalized SLE that accounts
- 137 for the horizontal migration of the shoreline in response to sea-level rise, for the transition from grounded to
- 138 floating ice and for Earth's rotational feedback on sea level (Spada and Melini, 2019). The programme
- 139 combines the two basic elements of GIA modelling (Earth's rheological profile and ice melting history since
- 140 the Last Glacial Maximum) assuming a Maxwell viscoelastic incompressible rheology. The GIA models
- 141 adopted are ICE-5G(VM2) (Peltier et al., 2004), ICE-6G(VM5a) (Peltier et al., 2012), both available on the
- 142 home page of WR Peltier, and the one developed by Kurt Lambeck and colleagues (National Australian
- 143 University, denoted as ANU hereafter; Nakada and Lambeck, 1987, Lambeck et al., 2003) provided to us by
- 144 A Purcell (pers. com. 2016). Intrinsic uncertainties are estimated from the comparison of GIA predictions
- 145 obtained with the models listed above (Melini and Spada, 2019). Table S1 summarises the values used for

. . .

7

146	each model. The paleo-topograp	hy has been solved it	eratively, using the present-	day global relief given by
-----	--------------------------------	-----------------------	-------------------------------	----------------------------

- 147 model ETOPO1 (Amante and Eakins, 2009). All the fields have been expanded to harmonic degree 512, on
- 148 an equal-area icosahedron-based grid (Tegmark, 1996) with a uniform resolution of ~20 km. The rotational
- 149 effect on sea-level change has been taken into account by adopting the "revised rotational theory" (Wahr and
- 150 Mitrovica, 2011).

151 4. Results

- 152 Lithostratigraphically, the cores show a succession of terrigenous (including fresh-water swamp, river
- 153 channel, flood plain), salt-marsh and marine sediments (Table S2) with a clear W-E trend from terrestrial to
- 154 marine dominance of deposits (Fig. 3-6). The around 80 km long transect A shows this trend: close to the
- 155 modern shoreline pre-Holocene terrigenous sediments are overlain by basal peat including salt-marsh peat or
- 156 peaty clay. Further inland these are replaced by fresh-water peat overlain by salt marsh and intertidal
- 157 sediments and, above, by terrigenous sediments. The cores DC01, CZ01 and CZ02 are composed of fluvial
- 158 sediments only, roughly confirming the Holocene maximum transgression inferred by Xue (1993). Multiple
- 159 shifts between salt marsh, marine and fluvial deposits are noticeable in cores QX02, QX03, CZ61 which
- 160 originate from the central part of the study area.

161 Marsh deposits are either a blackish and thin freshwater peat mostly interbedded in yellowish fluvial

- 162 sediments or a yellowish-brown salt-marsh peat bearing intertidal foraminifera (Table 1). Their lower
- 163 boundaries are usually sharp, and their upper boundaries are mostly diffused or the salt-marsh peat changes
- 164 gradually into dark grey intertidal sediments. Salt-marsh peat is intercalated in marine sediment sequences
- 165 (i.e. QX01, QX02, CZ61, CZ85, CZ66 and CZ03, Fig. 3-6), particularly at sites that are close to the
- 166 Holocene maximum landward limit.
- 167 In the core deposits we found Ammonia beccarii, Quinqueloculina akneriana rotunda, Protelphidium
- 168 *tuberculatum*. The foraminifera assemblages of the lower part of the intertidal zone and the near-shore
- 169 shallow sea area are similar. The abundance is either biased towards Ammonia beccarii or it is relatively
- 170 small. The latter is most probably due to the area being situated above the MHW and, hence, subject to

- 8
- 171 evaporation during low tide, with the consequence of a relatively high and highly variable salt content of the
- 172 pore water in the intertidal zone. The bias towards salt-tolerant species is confirmed by the modern analogue
- 173 samples (Fig. 2, Table 1).
- 174 The age of the basal peat ranges between 10047 cal BP and 7829 cal BP (Table 1). The spatial distribution of
- 175 the ages confirms the E-W trend of the Holocene transgression where the oldest age is close to the modern
- 176 shoreline and the youngest age is close to the maximum transgression limit.

177 **4.1 Indicative meaning and range**

- 178 The data obtained from the modern analogue shows that the tidal flat can be divided into two sub-
- 179 environments: intertidal with bioturbation (worm hole developed to tidal surface) and supratidal with salt-
- 180 marsh vegetation (Fig. 2). Within the supratidal and salt-marsh zones, the foraminiferal assemblages are
- 181 dominated by Ammonia beccarii and other intertidal species (Fig. 5) covering an elevational range from
- 182 +1.42 m to +2.00 m above msl, including the +1.79m boundary of salt marsh with plants. At sites below
- 183 these elevations, i.e. intertidal with bioturbation (Fig. 2), the foraminiferal assemblages are dominated by
- 184 Elphidium simplex, Ammonia beccarii and Pseudogyroidina Sinensis. This foraminiferal zone covers an
- 185 elevational range from 1.42 m to the present MSL. Our results from the core sediments show that the
- 186 foraminiferal assemblages are mostly dominated by Ammonia beccarii.

187 4.2 Sea-level Index points

- 188 In total 25 sea-level index points were established from the dated basal salt-marsh peat using the information
- 189 obtained from the modern analogue. In Core Q7, at the most seaward location in the study area, the basal
- 190 SLIP is dated to ~9700 cal BP (Table 1), marking the onset of marine inundation of the study area. The
- 191 overlying marine sequence is capped by a thick layer of shelly gravels at 1.30 m depth and the associated
- 192 SLIP is dated to 540 cal BP. This marks the upper end of the marine sequence as foraminifera start to
- 193 disappear alongside a change from intertidal to supratidal environmental conditions. The cores ZW15, QX02,
- 194 QX03, QX01 show the same sequence as Q7 and provide 6 SLIPs. 19 SLIPs were collected from other cores
- 195 (Table 1).

196 4.3 Observed and predicted sea level

- 197 Figure 7a compares observational data and sea-level predictions generated in this study. It shows that none of
- 198 GIA models approximates the observations. The difference ranges between around 14 m at 9 ka and 3 m at
- 199 2.5 ka. While SLIP data suggest a rising rate of ~0.4 cm/a during the early Holocene, the GIA models
- 200 indicate ~0.5 cm/a (ICE-X) and ~0.9 cm/a (ANU). For the mid-late Holocene SLIP data suggest ~0.04 cm/a
- 201 rising rate while the GIA models indicate a falling sea level. Predictions obtained from ICE-5G and ICE-6G
- 202 are relatively similar but deviate from each other in the timing of the mid-Holocene sea-level highstand. All
- three GIA models predict a mid-Holocene sea-level highstand (4.6 m -3.4 m) at 7-6 ka while the SLIP data
- 204 remain below modern sea level until 2 ka.

205 5. Discussion

206 5.1 Quality of SLIP data

- 207 Owing to elevated salinity of the coastal water samples from both cores and modern tidal flat are
- 208 characterised by low microfauna diversity and low number of foraminifera species. This precludes the use of
- 209 transfer function statistics and compels analysis based on direct comparison with the modern environment.
- 210 We have solved this analytical problem by establishing SLIPs exclusively from basal salt-marsh peats in
- 211 transgressive contact and corrected for compaction. With a general uncertainty of around 1.1 m our new
- 212 SLIPs are therefore more precise than previously published data (Li et al., 2015) mostly obtained from
- 213 chenier ridges, oyster reefs and marine shells. Notwithstanding SLIP improvement in terms of accuracy and
- 214 precision, fluctuation of the data exist that can exceed 1 m (e.g. at 3.9 ka and at 5.2 ka, Fig. 7). Although hard
- 215 to prove due to lack of data, we believe that these fluctuations are caused by groundwater extraction which
- 216 lowers the surface in places.

217 5.2 The observed Holocene sea-level rise

- 218 The SLIPs established indicate two phases of sea-level rise during the Holocene. The first phase occurred in
- 219 the early Holocene until ~6.5 ka when the sea level rose from -17 m to -4 m. The second phase occurred from

- 220 ~6.5 ka to 2 ka when the sea level rose from -4 m to -2 m. The oldest Holocene shoreline in Bohai Bay,
- 221 situated at -17.2 m and dated to 9700 cal BP, is associated with a transgressive systems tract (Tian et al.,
- 222 2017), the water depth of which suggests ~-20 m at 9400 cal BP as the start of the transgression. The
- 223 discrepancy is caused by sea ingression occurring ~300 years before Bohai Bay shelf experienced inundation
- 224 as indicated by a paleo-river channel deposit (Fig. 2) underlying the Holocene basal peat in core Q7. We take
- 225 it therefore for certain that the sea level reached around -15 m at ~9 ka. The final phase from 2 ka to today is
- 226 constrained by only one SLLP from core Q7 dated to 540 cal BP at ~0.5 m (Table 1). Lithostratigraphic data
- 227 (Shang et al., 2016) suggest that surface of the intertidal sediment body remained very close to zero m from
- 228 the landward limit of the marine transgression to about 2 km inland from the present shoreline. Further
- 229 inland, in borehole ZW15 the surface elevation of the same intertidal sediment body is ~3.0 m lower than in
- core Q7 (Fig. 3, 4) suggesting a rise of sea level in Bohai Bay in the last 1000 years.

231 5.3 Observed and predicted Holocene sea level

- 232 We compare our observational data with GIA models employed in this study and with Bradley et al. (2016;
- 233 henceforth denoted as BRAD; see also Table S1) who examined several ice-melting scenarios together with a
- 234 range of Earth-model parameters, and validated model outputs using published SLIP data from East China
- 235 Sea coast including Bohai Bay.
- 236 The comparison shows a significant discrepancy for all GIA models (Fig. 7a) including BRAD with
- 237 differences ranging between around 14 m in the early-mid Holocene and 3 m in the late Holocene. While the
- 238 ICE-X models approximate the observed early Holocene rising rate, the timing of this rise is offset by about
- 239 2000 years. In the ANU model the early Holocene sea level rises almost twice as fast as the observed one
- 240 with an offset of ~500 years. Thus, the observed sea level rises slower than the modelled sea level. Because
- 241 the misfit almost disappears south of Bohai Bay (Fig. S1), the most obvious explanation is subsidence of the
- 242 coastal plain. Subsidence is a non-GIA component and should become evident through the residuals (i.e. the
- 243 difference between observation and prediction per unit of time; Fig. 7b). Indeed, we identify linearity of
- residuals for the period 7-0 ka, suggesting that subsidence dominates the local sea-level signal after the rise

11

- 245 of the eustatic sea level has slowed down. A subsidence rate of 1.25 mm/a is estimated from the residuals,
- similar to Wang et al. (2003) who deduced a rate of ~1.5 mm/a from the 400-500 m thick Quaternary
- 247 sequence in the bay. It is possible that fluvial sediment supply enhanced the subsidence rate in the Holocene.
- 248 The Yellow River's annual discharge into Bohai Bay is estimated to 0.2 Gt until 740AD rising to 1.2 Gt until
- 249 around 1800 when widespread farming on the loess plateau started increasing the river's sediment load (Best,
- 250 2019). Thus, the sea-level rise in Bohai Bay is in the early Holocene dominated by the global sea-level rise
- and associated GIA effects, while in the mid-late Holocene it is dominated by a combination of tectonic
- subsidence and fluvial sediment load.

253 6. Conclusions

- 254 Using advanced methods for field survey and identification of sea-level markers, we have established new
- 255 precise sea-level index points for the northernmost embayment of the Yellow Sea. Our new data are not only
- 256 different to previously published data in that they do not show the expected mid-Holocene sea level
- 257 highstand, but also different to global GIA models. We see that as soon as ice melting has ceased, local
- 258 processes control shoreline migration and coast evolution. This indicates that more emphasis should be
- 259 placed on regional coast and sea-level change modelling under a global sea-level rising future as the local
- 260 government need more specific and effective advice to deal with coastal flooding.

261 7. ACKNOWLEDGMENTS

- 262 We thank anonymous reviewers, who gave many constructive suggestions, and this work was supported by
- 263 the the China Geological Survey, CGS (DD20189506) and National Natural Science Foundation of China
- 264 (Grant no. 41476074, 41806109, 41972196). We also thank Mr. Pei Y. and Shang Z., who contributed to
- 265 fieldwork and sample preparation respectively.

- 267 Amante, C. and Eakins, B.: ETOPO1 Arc-Minute Global Relief Model: Procedures, Data Source and
- 268 Analysis. Tech. rep, DOI: 10.7289/V5C8276M, 2009.
- 269 Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G., Rougerie, F.: Deglacial sea-level
- 270 record from Tahiti corals and the timing of global meltwater discharge. Nature, 382, 241–244.
- 271 https://doi.org/10.1038/382241a0, 1996.
- 272 Bard, E., Hamelin, B. and Delanghe-Sabatier, D.: Deglacial meltwater pulse 1B and Younger Dryas sea
- 273 levels revisited with boreholes at Tahiti. Science, 327, 1235-1237. DOI: 10.1126/science.1180557, 2010.
- 274 Bradley, S.L., Milne, G.A., Horton, B.P., Zong, Y.Q.: Modelling sea level data from China and Malay-
- 275 Thailand to estimate Holocene ice-volume equivalent sea level change. Quaternary Science Reviews, 137,
- 276 54–68. DOI: 10.1016/j.quascirev.2016.02.002, 2016.
- 277 Brain, M.J., Kemp, A.C., Horton, B.P., Culver, S.J., Parnell, A.C., Cahill, N.: Quantifying the contribution of
- 278 sediment compaction to late Holocene salt-marsh sea-level reconstructions, North Carolina, USA.
- 279 Quaternary Research, 83, 41-51. DOI: 10.1016/j.yqres.2014.08.003, 2015.
- 280 Brain, M.J. Chapter 30 Compaction. In: Shennan, I., Long, A.J., Horton, B.P. (Eds.): Handbook of Sea-level
- 281 Research. John Wiley & Sons Ltd. Chichester, UK, 2015.
- 282 Cang, S.X., Zhao, S.L., Zhang, H.C., Huang, Q.F.: Middle Pleistocene paleoecology, paleoclimatology and
- 283 paleogeography of the western coast of Bohai Gulf. Acta Palaeontologica Sinica 18(6): 579–591. DOI:
- 284 10.19800/j.cnki.aps.1979.06.006, 1979 (in Chinese with English abstract).
- 285 Cronin, T.M.: Rapid sea-level rise. Quaternary Science Review, 56, 11-30.
- 286 https://doi.org/10.1016/j.quascirev.2012.08.021, 2012.
- 287 Engelhart, S. E., Peltier, W. R., Horton, B. P., Khan, N. S., Liu, S., Vacchi, M.: A Holocene Database of
- 288 Relative Sea Levels for North America and the Caribbean: Implications for Geophysical Models.
- American Geophysical Union, Fall Meeting 2011, abstract #GC43D-0964, 2011
- 290 Farrell, W. and Clark, J.: On postglacial sea-level. Geophys. J. Roy. Astr. S., 46, 647–667. DOI:
- 291 10.1111/j.1365-246X.1976.tb01252.x, 1976

- 292 Feng, X.L., Lin, L., Zhuang, Z.Y, Pan, S.C.: The relationship between geotechnical parameters and
- 293 sedimentary environment of soil layers since Holocene in modern Huanghe subaqueous Delta. Coastal
- 294 Engineering, 18, 4, 1-7. DOI: CNKI:SUN:HAGC.0.1999-04-000, 1999 (in Chinese with English abstract).
- 295 Funabiki, A., Haruyama, S., Nguyen, V.Q., Pham, V.H., Dinh, H.T.: Holocene delta plain development in the
- 296 Song Hong (Red River) delta, Vietnam. Journal of Asian Earth Sciences, 30, 518–529. DOI:
- 297 10.1016/j.jseaes.2006.11.013, 2007.
- 298 Geng, X.S.: Marine transgressions and regressions in east China since late Pleistocene Epoch. Acta
- 299 Oceanlogica Sinica, 3(1), 114–130.
- 300 http://www.hyxb.org.cn/aos/ch/reader/create_pdf.aspx?file_no=19810110&flag=&journa
- 301 l_id=aos&year_id=1981, 1981 (in Chinese with English abstract).
- 302 Geyh, M.A., Kudrass, H.R.and Streif, H.: Sea-level changes during the Late Pleistocene and Holocene in the
- 303 Strait of Malacca. Nature, 278, 441–443. DOI: 10.1038/278441a0, 1979.
- 304 Hanebuth, T., Stattegger, K.and Grootes, P.M.: Rapid flooding of the Sunda Shelf: a late-glacial sea-level
- 305 record. Science, 288, 1033-1035. DOI: 10.1126/science.288.5468.1033, 2000.
- 306 He, Q.X.(Eds.): Marine Sedimentary Geology of China. Beijing: China Ocean Press: 464–466, 2006 (in
- 307 Chinese).
- 308 Hori, K., Saito, Y., Zhao, Q., Cheng, X., Wang, P., Sato, Y., Li, C., 2001. Sedimentary facies and Holocene
- 309 progradation rates of the Changjiang (Yangtze) delta, China. Geomorphology, 41, 233–248. DOI:
- 310 10.1016/S0169-555X(01)00119-2, 2001.
- 311 Hori, K., Tanabe, S., Saito, Y., Haruyama, S., Nguyen, V., Kitamura, A.: Delta initiation and Holocene sea-
- 312 level change: Example from the Song Hong (Red River) Delta, Vietnam. Sedimentary Geology, 164,
- 313 237–249. DOI: 10.1016/j.sedgeo.2003.10.008, 2004.
- 314 Hori, K. and Saito, Y.: An early Holocene sea-level jump and delta initiation. Geophysical Research Letters,
- 315 34, L18401. DOI: 10.1029/2007gl031029, 2007.

- 316 Horton, B. P., Gibbard, P. L., Milne, G. M., Morley, R. J., Purintavaragul, C., Stargardt, J. M.: Holocene
- 317 sea levels and palaeoenvironments, Malay-Thai Peninsula, Southeast Asia. Holocene, 15(8), 1199–1213.
- 318 https://doi.org/10.1191/0959683605h1891rp, 2005.
- 319 IPCC: Climate Change 2014: Synthesis Report Summary for Policymakers, 1-31, 2014.
- 320 Lambeck, K., Woodroffe, C.D., Antonioli, F., Anzidei, M., Gehrels, W.R., Laborel, J., Wright, A.J.:
- 321 Paleoenvironmental records, geophysical modeling, and reconstruction of sea-level trends and variability
- 322 on centennial and longer timescales, In: Understanding Sea-Level Rise and Variability (Church, J. A.;
- 323 Woodroffe, P.L.; Aarup, T.; Wilson, W.S., eds.), Wiley-Blackwell, 61–121. DOI:
- 324 10.1002/9781444323276.ch4, 2010.
- 325 Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M.: Sea level and global ice volumes from the
- 326 Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences, 111,
- 327 15296–15303. DOI: 10.1073/pnas.1411762111, 2014.
- 328 Lambeck, K., Purcell, A., Johnston, P., Nakada, M., Yokoyama, Y.: Water-load definition in the glacio-
- 329 hydro-isostatic sea-level equation. Quaternary Science Reviews, 137, 54-68. DOI: 10.1016/s0277-
- 330 3791(02)00142-7, 2003.
- 331 Li, S.Y.: Preliminary investigation of the ancient shorelines and buried cultural relics along the west Bohai
- 332 Bay. Archaeology, 652–657. DOI: CNKI:SUN:KAGU.0.1962-12-006 (in Chinese).
- 333 Li, C., Chen, Q., Zhang, J., Yang, S, Fan, D.: Stratigraphy and paleoenvironmental changes in the Yangtze
- delta during the Late Quaternary. Journal of Asian Earth Sciences, 18, 453–469. DOI: 10.1016/S1367-
- 335 9120(99)00078-4, 2000.
- 336 Li, J., Pei, Y., Wang, F., Wang, H.: Distribution and environmental significance of living foraminiferal
- 337 assemblages and taphocoenose in Tianjin intertidal zone, the west coast of Bohai Bay. Marine geology &
- 338 Quaternary geology, 29(3), 9–21. DOI: CNKI:SUN:HYDZ.0.2009-03-004, 2009. (in Chinese with English
- abstract).

- 340 Li, J., Shang, Z., Wang, F., Chen, Y., Tian, L., Jiang, X., Wang, H.: Holocene sea level change on the west
- 341 coast of the Bohai Bay. Quaternary Sciences, 35(2), 243–264. DOI: 10.11928/j.issn.1001-
- 342 7410.2015.02.01, 2015 (in Chinese with English abstract).
- 343 Li, J.F., Shang, Z.W., Jiang, X.Y., Chen, Y.S., Wang F., Tian, L.Z., Wang, H., 2016. Sea-level indicated by
- 344 for aminifera assemblages living in open muddy flats with or without influence of the Chenier ridges in
- 345 Bohai Bay coastal area. Geological Bulletin of China 35(10), 1578-1583. DOI: 10.3969/j.issn.1671-
- 346 2552.2016.10.003, 2016 (in Chinese with English abstract).
- 347 Li, S.L.: Distribution of the foraminiferal thanatocoenosis of PEARL River estuary. Marine geology &
- 348 Quaternary Geology, 5(2), 83–101. DOI: 10.16562/j.cnki.0256-1492.1985.02.009, 1985 (in Chinese with
- 349 English abstract).
- 350 Lloyd, J.M., Zong, Y., Fish, P., Innes, J.B.: Holocene and Late glacial relative sea-level change in north-west
- 351 England: implications for glacial isostatic adjustment models. Journal of Quaternary Science, 28, 59–70.
- 352 DOI: 10.1002/jqs.2587, 2013.
- 353 Melini, D. and Spada, G.: Some remarks on Glacial Isostatic Adjustment modelling uncertainties.
- 354 Geophysical Journal International, 218, 1, 401–413. https://doi.org/10.1093/gji/ggz158, 2019.
- 355 Mitrovica, J. and Wahr, J.: Ice Age Earth Rotation. Annual Review of Earth and Planetary Sciences, 39, 577-
- 356 616. DOI: 10.1146/annurev-earth-040610-133404, 2011.
- 357 Nakada, M. and Lambeck, K.: Glacial rebound and relative sea-level variations: a new appraisal.
- 358 Geophysical Journal International, 90, 1, 171-224. DOI: 10.1111/j.1365-246X.1987.tb00680.x, 1987.
- 359 Nicholls, R.J. and Cazenave A.: Sea-level rise and its impact on coastal zones. Science, 328, 1517-1520.
- 360 DOI: 10.1126/science.1185782, 2010.
- 361 Peltier, W.R.: Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) Model and
- 362 GRACE, Annu. Rev. Earth Pl. Sc., 32, 111–149.
- 363 https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004.

- 364 Peltier, W.R., Drummond, R., and Roy, K.: Comment on Ocean mass from GRACE and glacial isostatic
- 365 adjustment by DP Chambers et al., J. Geophys. Res.-Sol. Ea., 117, B11403.
- 366 https://doi.org/10.1029/2011JB008967, 2012.
- 367 Peltier, W.R., Argus, D.F., Drummond, R., Moore, A.W.: Space geodesy constrains ice-age terminal
- 368 deglaciation: the global ICE-6G C (VM5a) model. Journal of Geophysical Research: Solid Earth, 120,
- 369 450-487. https://doi.org/10.1002/2014JB011176, 2015.
- 370 Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Cheng, H.,
- 371 Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C.,
- 372 Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer,
- 373 R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., van der Plicht, J.: IntCal13 and
- 374 MARINE13 radiocarbon age calibration curves 0–50000 years cal BP. Radiocarbon, 55(4), 1869–1887.
- doi: 10.2458/azu_js_rc.55.16947Bronk Ramsey C and Lee S (2013), 2013.
- 376 Shang, Z.W., Wang, F., Li, J.F., Marshall, W.A., Chen, Y.S., Jiang, X.Y., Tian, L.Z., Wang, H.: New
- 377 residence times of the Holocene reworked shells on the west coast of Bohai Bay, China. Journal of Asian
- 378 Earth Sciences, 115, 492–506. DOI: 10.1016/j.jseaes.2015.10.008, 2016.
- 379 Shang, Z.W., Wang, F., Fang J., Li, J.F., Chen, Y.S., Jiang, X.Y., Tian, L.Z., Wang, H.: Radiocarbon ages of
- 380 different fractions of peat on coastal lowland of Bohai Bay: marine influence? Journal of Oceanology and
- 381 Limnology, https://doi.org/10.1007/s00343-019-7091-7, 2018.
- 382 Shennan, I., Long, A.J. and Horton, B.P.(Eds.): Handbook of sea-level research. Published by John Wiley &
- 383 Sons, Ltd., 2015.
- 384 Spada, G. and Stocchi, P.: SELEN: a Fortran 90 program for solving the "Sea Level Equation", Comput.
- 385 Geosci., 33, 538–562. DOI: 10.1016/j.cageo.2006.08.006, 2007.
- 386 Spada, G. and Melini, D.: SELEN4 (SELEN version 4.0): a Fortran program for solving the gravitationally
- 387 and topographically self-consistent sea-level equation in glacial isostatic adjustment modelling.
- 388 Geoscientific Model Development, 12, 5055-5075. DOI: 10.5194/gmd-12-5055-2019, 2019

- 389 Su, S.W., Shang, Z.W., Wang, F., Wang, H.: Holocene Chenier: spatial and temporal distribution and sea
- level indicators in Bohai Bay. Geological Bulletin of China, 30(9), 1382–1395. DOI: 10.1007/s11589-011-
- 391 0776-4, 2011(in Chinese with English abstract).
- 392 Sun, Y.Y., Wu, P., Huang, G.Q., Zong, Y.Q.: Holocene sea-level reconstruction for Guangdong coast and a
- 393 comparison with GIA model outputs. Quaternary Sciences, 35(2), 282–290. DOI:10.11928/j.issn.1001-
- 394 7410.2015.02.04, 2015 (in Chinese with English abstract).
- 395 Ta, T.K.O., Nguyen, V.L., Taeishi, M., Kobayashi, I., Tanabe, S., Saito, Y.: Holocene delta evolution and
- 396 sediment discharge of the Mekong River, South Vietnam. Quaternary Science Reviews, 21, 1807–1819.
- 397 DOI: 10.1016/s0277-3791(02)00007-0, 2002.
- 398 Tam, C-Y., Zong, Y., Kamaludin, bH., Hamlee, bI., Habibah, bJ., Xiong, H., Wu, P., Sun, Y., Huang, G.,
- 399 Zheng, Z.: A below-the-present late Holocene relative sea level and the glacial isostatic adjustment during
- 400 the Holocene in the Malay Peninsula. Quaternary Science Reviews, 201, 206-222.
- 401 https://doi.org/10.1016/j.quascirev.2018.10.009, 2018.
- 402 Tamura, T., Saito, Y., Sieng, S., Ben B., Kong, M., Sim, I., Choup, S., Akiba, F.: Initiation of the Mekong
- 403 River delta at 8ka: evidence from the sedimentary succession in the Cambodian lowland. Quaternary
- 404 Science Reviews, 28, 327–344. DOI: 10.1016/j.quascirev.2008.10.010, 2009.
- 405 Tanabe, S., Saito, Y., Quang, L.V., Hanebuth, T.J.J., Quang, L.N., Kitamura, A.: Holocene evolution of the
- 406 Song Hong (Red River) delta system, northern Vietnam. Sedimentary Geology, 187, 29–61.
- 407 http://377.rm.cglhub.com/10.1016/j.sedgeo.2005.12.004, 2006.
- 408 Tegmark, M.: An icosahedron-based method for pixelizing the celestial sphere, Astrophys. J., 470, L81–L85,
- 409 https://doi.org/10.1086/310310, 1996.
- 410 Wang, F., Li, J.F., Chen, Y.S., Fang, J., Zong, Y.Q., Shang, Z.W., Wang H.: The record of mid-Holocene
- 411 maximum landward marine transgression in the west coast of Bohai Bay, China. Marine Geology, 359,
- 412 89–95. DOI: 10.1016/j.margeo.2014.11.013, 2015.

- 18
- 413 Wang, H., Jia L., Wu P. Jiang, L., Hu, B. Xiang, L.: Effects of last-deglaciation on the historical relative sea
- 414 levels of East Asia Seas and the implications. Chinese Journal of Geophysics, 55(4), 1144–1153. DOI:
- 415 10.6038/j.issn.0001-5733.2012.04.010, 2012.
- 416 Wang, H.: Chronology of Holocene chenier and oyster reefs on the coast of Bohai Bay, China. Quaternary
- 417 Research, 47, 192–205. DOI: 10.1006/qres.1996.1865, 1997.
- 418 Wang, H., Chen, Y.S., Tian, L.Z., Li, J.F., Pei, Y.D., Wang, F., Shang, Z.W., Fan, C.F., Jiang, X.Y., Su,
- 419 S.W., Wang, H.: Holocene cheniers and oyster reefs in Bohai Bay: palaeoclimate and sea level changes.
- 420 Geological Bulletin of China, 30(9), 1405–1411. DOI: 10.1007/s11589-011-0776-4, 2011(in Chinese with
- 421 English abstract).
- 422 Wang, H., Fan, C.F., Li, J.F., Li, F.L., Yan, Y.Z., Wang, Y.S., Zhang, J.Q., Zhang, YF.: Holocene oyster
- 423 reefs on the northwest coast of the Bohai Bay, China. Geological bulletin of China, 25(3), 315–331.
- 424 http://dzhtb.cgs.cn/gbc/ch/reader/create_pdf.aspx?file_no=20060354&flag=1&year_id=2006&quarter_id=
- 425 3, 2006 (in Chinese with English abstract).
- 426 Wang, P.X., Min, Q.B. and Bian, Y.H.: Distributions of foraminifera and ostracoda in bottom sediments of
- 427 the northwestern part of the South Huanghai (Yellow) Sea and its geological significance. In: Wang, P.
- 428 (Eds.), Marine Micropaleontology of China. China Ocean Press, Beijing, pp. 93–114, 1985 (in Chinese
- 429 with English abstract).
- 430 Wang, P.X., Min, Q.B., Bian, Y.H., Cheng, X.R.: Strata of quaternary transgressions in east China: a
- 431 preliminary study. Acta Geologica Sinica, 1, 1–13. DOI: 10.1007/BF01077538, 1981 (in Chinese with
- 432 English abstract).
- 433 Wang, R.B., Zhou, W., Li, F.L., Wang, H., Yang, G.Y., Yao, Z.J., Kuang, S.J.: Tectonic subsidence and
- 434 prospect of ground subsidence control in Tianjin area. Hydrogeology & Engineering Geology, 5, 12-17.
- 435 DOI: 10.1007/BF02873153, 2003 (in Chinese with English abstract).
- 436 Wang, Y.: The shell coast ridges and the old coastlines of the west coast of the Bohai Bay. Bulletin of
- 437 Nanjing University (Edition of Natural Sciences), 8(3), 424–440. DOI: CNKI:SUN:NJDZ.0.1964-03-007,
- 438 1964 (with three plates) (in Chinese with English abstract).

19
Wang, Y.M.: A preliminary study on the Holocene transgression on the coastal plain along the north-western
Bohai Bay. Geographical Research, 1(2), 59-69. DOI: 10.11821/yj1982020007, 1982 (in Chinese with
English abstract).
Wang, Z., Zhuang, C., Staito, Y., Chen, J., Zhan, Q., Wang, X.: Early mid-Holocene sea-level change and
coastal environmental response on the southern Yangtze delta plain, China: implications for the rise of
Neolithic culture. Quaternary Science Reviews, 35, 51-62. DOI: 10.1016/j.quascirev.2012.01.005, 2012.
Wang, Z., Jones, B.G., Chen, T., Zhao, B., Zhan, Q.: A raised OIS3 sea level recorded in coastal sediments,
southern Changjiang delta plain, China. Quaternary Research, 79, 424–438. DOI:
10.1016/j.yqres.2013.03.002, 2013.
Xiong, H., Zong, Y., Qian, P., Huang, G., Fu, S.: Holocene sea-level history of the northern coast of South
China Sea. Quaternary Science Reviews 194, 12-26. https://doi.org/10.1016/j.quascirev.2018.06.022, 2018.
Xu, J.S.: Cheniers and sea level changes in Huanghua coast, Bohai Bay. Marine Science Bulletins, 1, 62–72.
http://www.hyxb.org.cn/aos/ch/reader/create_pdf.aspx?file_no=19940109&flag=&journal_id=aos&year_id
=1994, 1994 (in Chinese with English abstract).
Yang, H.R. and Chen, Q.X.: Quaternary transgressions, eustatic changes and shifting of shoreline in east
China. Marine Geology & Quaternary Geology, 5(4), 69–80. DOI: 10.16562/j.cnki.0256-
1492.1985.04.011, 1985 (in Chinese with English abstract).
Zhang, Y.C., Hu, J.J. and Liu, C.F.: Preliminary recognition of sea and land changes along the east coast of
China since the terminal Pleistocene. Bulletin of the Chinese Academy of Geological Sciences, 19, 37-52.
https://www.ixueshu.com/document/8e1a59a8c6fd86ca318947a18e7f9386.html, 1989 (in Chinese with
English abstract).
Zhao, S.L., Yang, G.F., Cang, S.X., Zhang, H.C., Huang, Q.F., Xia, D.X., Wang, Y.J., Liu, F.S., Liu, C.F.:
On the marine stratigraphy and coastlines of the western coast of the gulf of Bohai. Oceanologia Et
Limnologia Sinica, 9(1), 15–25.
$http://qdhys.ijournal.cn/hyyhz/ch/reader/create_pdf.aspx?file_no=19780102\&flag=\&journal_id=hyyhz\&yhtterested aspx?file_no=19780102\&flag=&journal_id=hyyhz&yhtterested aspx?file_no=19780102\&flag=&journal_id=hyyhz&yhterested aspx?file_no=19780102\&flag=&journal_id=hyyhz&yhterested aspx?file_no=19780102\&flag=&journal_id=hyyhz&yhterested aspx?file_no=19780102\&flag=&journal_id=hyyhz&yhterested aspx?file_no=19780102\&flag=&journal_id=hyyhz&yhterested aspx?file_no=19780102\&flag=&journal_id=hyyhterested aspx?file_no=1978010000000000000000000000000000000000$

464 ar_id=1978, 1978 (in Chinese with English abstract).

2	0
	0
~	•

- 465 Zhao, X.T. (Eds.): The Holocene coastline shifts along the western coast of the Bohai Bay [M]//Institute of
- 466 Geology, Academy of Sciences, Institute of Geology, State Bureau of Seismology. Formation and
- 467 Development of the North China Fault Block Region. Beijing: Science Press, 302–309, 1980 (in Chinese).
- 468 Zong, Y.: Mid-Holocene sea-level highstand along the Southeast Coast of China. Quaternary
- 469 International, 117(1), 55–67. DOI: 10.1016/S1040-6182(03)00116-2, 2004.
- 470 Zong, Y., Huang, G., Switzer, A.D., Yu, F., Yim, W.W.-S.: An evolutionary model for the Holocene
- 471 formation of the Pearl River delta, China. The Holocene, 19, 129–142. DOI: 10.1177/0959683608098957,
- 472 2009.
- 473 Zong, Y., Huang, K., Yu, F., Zheng, Z., Switzer, A.D., Huang, G., Wang, N., Tang, M.: The role of sea-level
- 474 rise, monsoonal discharge and the palaeo-landscape in the early Holocene evolution of the Pearl River
- delta, southern China. Quaternary Science Reviews, 54, 77–88. DOI: 10.1016/j.quascirev.2012.01.002,
- 476 2012.
- 477

21

Table 1. Ana	lytical dats	a used to esta	blish SLIPs.							
Beta-lab	Depth	Altitude	Dated material	δ ¹³ C	Conventional	Calibrated age	Median	Indicative meaning	Sediment	Palaeo-mean
code	(m)	(m, msl)		(%)	age (BP)	(BP) (2a)	age (BP)	and range	compaction (m)*	sea level
Core DC0	1									
329636	8.40	-4.66	Peat	-26.8	6950 ± 40	7523-7430	7487	Terrestrial peat		
329637	9.27	-5.53	Bulk organic	-18.2	$7410{\pm}60$	8372-8153	8248	Terrestrial peat		
Core QX0	1									
329647	5.52	+0.36	Bulk organic	-22.5	4300 ± 30	4892-4829	4343**	1.78 ± 0.53	0.29 ± 0.04	$-1.14{\pm}0.57$
329644	6.35	-1.19	Bulk organic	-23.6	5010 ± 50	5900-5644	5226**	1.78 ± 0.53	0.30 ± 0.04	$-2.68{\pm}0.57$
329643	7.20	-2.04	Bulk organic	-25.0	5090 ± 30	5912-5748	5288**	1.78 ± 0.53	0.25 ± 0.03	-3.58 ± 0.56
329641	8.20	-3.04	Peat	-24.6	5830 ± 30	6732-6554	6647	1.78 ± 0.53	0.24 ± 0.03	-4.58 ± 0.56
329642	8.70	-3.54	Peat	-24.3	6030 ± 40	6981-6778	6875	1.78 ± 0.53	0.21 ± 0.03	-5.11 ± 0.56
329645	9.16	-4.00	Peat	-27.4	6220 ± 40	7250-7006	7117	1.78 ± 0.53	0.18 ± 0.02	$-5.60{\pm}0.55$
329640	11.39	-6.23	Peat	-25.3	7010±30	7935-7786	7855	1.78 ± 0.53	$0.01 {\pm} 0.01$	-8.00 ± 0.54
329646	13.05	-7.89	Peat	-25.1	7200±30	8057-7952	8002	Terrestrial peat		
Core QX0	3									
353792	2.91	1.47	Peat	-20.6	2350 ± 30	2461-2326	2357	Terrestrial peat		
353794	4.90	-0.42	Peat	-24.0	3390 ± 30	3699-3569	3634	1.78 ± 0.53	0.16 ± 0.02	$-2.01{\pm}0.55$
353796	7.39	-3.01	Plant material	NA	5930 ± 30	6799-6671	6752	1.78 ± 0.53	0.10 ± 0.02	-4.68 ± 0.55
353798	8.63	-4.25	Plant material	-26.7	6410 ± 40	7420-7271	7350	$1.78{\pm}0.53$	$0.01 {\pm} 0.01$	-6.02 ± 0.54
353800	9.60	-5.22	Plant material	-28.2	6690 ± 40	7622-7478	7562	Terrestrial peat		
353802	12.40	-8.02	Plant material	-28.3	7280 ± 40	8429-8325	8397	Terrestrial peat		
Core QX0	2									

Earth Surface Dynamics Discussions

 21

23

24

** corrected for marine influence on salt marsh organic sample fraction ages of peaty clay

480 481

479

482 Figure captions

489

484 Figure 1. The study area; (a) location of Bohai Bay and Yellow Sea; (b) location of the study area and major river

485 deltas; red dashed lines indicate the topographic boundaries of coastal lowland, (c) locations of boreholes,

486 transects A, B, C, D, Chenier ridges (Su et al. (2011; Wang et al., 2011) and Holocene transgression limit (Xue,

487 1993). The basemap of Fig.1a and Fig.1b are cited from "map world" (https://www.tianditu.gov.cn/, National

488 Plateform for Common Geispatial Information Services, China)

490 Figure 2. Schematic cross-section of the modern tidal flat of the study area showing two characteristic

491 foraminiferal zones. The basemap of study area is cited from "map world" (https://www.tianditu.gov.cn/, National

492 Plateform for Common Geispatial Information Services, China)

495 Figure 3. The lithostratigraphy of transect A, with details of dated sedimentary horizons.

497 Figure 4. Foraminiferal counts from five cores of transect A. Counts > 500 are shown as 500.

499 Figure 5. The lithostratigraphy of transects B, C and D, with details of dated sedimentary horizons.

29

- 501 Figure 6. Foraminiferal counts from five cores of transects B, C and D. Counts > 500 foraminifera are shown as
- 502 500.

504 Figure 7. Observed and predicted sea level in Bohai Bay; (a) SLIPs generated in this study and sea-level

505 predictions. ICE-5G, ICE-6G and ANU are ice models described in section 3.6. For model parameters see Table

- 506 S1; (b) Sea-level residuals plotted against time. Residuals are the difference between SLIPs and interpolated
- 507 model data points. Error bars are derived from SLIP uncertainties. The trend line (dashed line) is computed as a
- 508 least-squares regression on the mean residuals obtained with ANU and ICE-6G. The regression line approximates
- 509 zero elevation remarkably closely which gives confidence that the calculated 1.25 mm/a for the non-GIA
- 510 component is correct.
- 511

30

512 Author contribution

Author name	Contributions
Fu Wang	Scientific questions choice, location choice of the boreholes, sampling,
	measuring, data analyse, results and discussion, entire paper writing.
Yongqiang Zong	Revise the part of of the paper and English writing.
Barbara Mauz	Revise the part of the paper and English writing.
Jianfen Li	Sampling and foraminifera analyse.
Jing Fang	Sampling and foraminifera analyse.
Lizhu Tian	Sampling and foraminifera analyse.
Yongsheng Chen	Sampling and foraminifera analyse.
Zhiwen Shang	Sampling and foraminifera analyse.
Xingyu Jiang	Sampling and foraminifera analyse.
Giorgio Spada	Modelling sea level part "3.6" and "5.3"
Daniele Melini	Modelling sea level part "3.6" and "5.3"